Research and Development Activities in RF and mm-Wave IC Design

Howard Luong

Wireless Communications Integrated Circuits Laboratory (WIC2L) Department of Electronic and Computer Engineering Hong Kong University of Science and Technology

http://www.ee.ust.hk/~analog eeluong@ee.ust.hk

2

Research Focus

- New design ideas and techniques for RF and analog integrated circuits and systems for wireless applications:
 - System architecture
 - Circuit implementation
- Key focus and features:
 - Standard digital CMOS processes \rightarrow Lowest cost
 - Low voltage
 - Low power
 - High integration level
 - No off-chip components (inductors, filters, baluns)

UST RFIC Activities, Howard Luong

Outline

- Research Focus
- Summary of Activities in RFIC and Single-Chip Systems
 - $-\ RF$ and mmW IC Building Blocks
 - Single-Chip Transceiver Systems for Wireless Applications
- IP and Publication \blacksquare
 - Books
 - Patents
 - Journal of Solid-State Circuits (JSSC)
 - International of Solid-State Circuit Conference (ISSCC)
- Appendix
 - Information about Completed and On-Going Projects

Outline

- Research Focus
- Summary of Activities in RFIC and Single-Chip Systems
 - RF and mmW IC Building Blocks
 - Single-Chip Transceiver Systems for Wireless Applications
- IP and Publication
 - Books
 - Patents
 - Journal of Solid-State Circuits (JSSC)
 - International of Solid-State Circuit Conference (ISSCC)
- Appendix
 - Information about Completed and On-Going Projects

RF and mmW Synthesizers (I)

- Low-Voltage Low-Power CMOS RF and mmW <u>Synthesizers</u> and <u>Building Blocks</u> (GSM, Bluetooth, RFID, NFC, WLAN, Cable TV Tuner, UWB, SDR, P2P, mm-Wave, sub-THz)
 - Transformer-Feedback VCOs and Frequency Dividers
 - Fully-Integrated CMOS PLLs and Frequency Synthesizers
 - Dual-Loop, Integer-N, and Fractional-N Synthesizers
 - SSB-Mixed-Based Fast-Settling Synthesizer for UWB
 - All-Digital Frequency Synthesizers
 - 60-GHz VCOs and Frequency Dividers
 - SDR Frequency Synthesizers (covering all existing standards from 50MHz to 10GHz and from 57GHz to 66GHz)
 - LO Generation for 4-Path 60-GHz Phased-Array Receivers 🕨
 - 21GHz-48GHz Low-Phase-Noise Synthesizer for P2P

Single-Chip Transceiver Systems (I)

- Single-Chip CMOS 900-MHz GSM Transceiver (completed)
 - Integrate ALL Building Blocks On-Chip
 - Design in a 0.5-µm Standard Digital CMOS Process
 - Demonstration of Single-Chip GSM Transceiver
 - Highest On-Chip Image Rejection and Smallest Chip Area 🛛 🔊
- CMOS 1-V 5.2-GHz Wireless Transceiver for WLAN Applications (IEEE 802.11a) (completed)

 \triangleright

 \triangleright

 \triangleright

- System-On-Chip with IQ ADC and DAC
- Single 1-V Supply
- Low Power (< 50 mW for Receiver and Transmitter)
- Embedded Power-Management Circuitry

RF and mmW IC Building Blocks (II)

- Low-Voltage Low-Power CMOS RF and mmW <u>IC Building</u> <u>Blocks</u> (GSM, Bluetooth, RFID, NFC, WLAN, Cable TV Tuner, UWB, RFID, SDR, mm-Wave, sub-THz)
 - LNAs: Narrow-band, Ultra-wide-band, SDR
 - Mixers: Narrow-band, Ultra-wide-band, SDR, image-rejection
 - On-Chip Image-Rejection and Channel-Selection Filters
 - Sigma-Delta Bandpass Analog-To-Digital Converters
 - Time-To-Digital Converters (TDC)
 - Fully-Integrated CMOS Power Amplifiers
 - All-Digital Power Amplifiers

Single-Chip Transceiver Systems (II)

- Single-Chip CMOS TV Tuners (Cable, DVB-T/H) (completed)
 - Frequency Band (54 MHz 880 MHz)
 - Wide Bandwidth (6 MHz)
 - Novel Single-Conversion Architecture without Tracking Filter
 - Integrate On-Chip 44-MHz Channel-Selection Filter
 - Small Chip Area, Low Power, Low Cost
- CMOS Ultra-Wideband (UWB) Transceiver (completed)
 - Frequency Band (3.1 GHz 10 GHz)
 - Wide Bandwidth (> 500 MHz)
 - High Data Rate and Low Power
 - Single-Chip

Outline

- Research Focus
- · Summary of Activities in RFIC and Single-Chip Systems
 - RF and mmW IC Building Blocks
 - Single-Chip Transceiver Systems for Wireless Applications
- IP and Publication
 - Books
 - Patents
 - Journal of Solid-State Circuits (JSSC)
 - International of Solid-State Circuit Conference (ISSCC)
- Appendix
 - Information about Completed and On-Going Projects

Single-Chip Transceiver Systems (IV)

- Reconfigurable CMOS Software-Defined Transceiver (*on-going*)
 - Frequency band (50 MHz 10 GHz, 60GHz)
 - Reconfigurable bandwidth (200 KHz 500 MHz, 2GHz)
 - Reconfigurable performance
- Beyond-60GHz and sub-THz Systems (on-going)
 - Dual-band vehicle radar control (22GHz and 77GHz)
 - 60-GHz 4-path phased-array receivers
 - mm-Wave and sub-THz imaging systems
- Envelope-Tracking LTE PAs and Transmitters (on-going)
- Energy-Efficient Transceivers and Building Blocks for Biomedical and Implantables (*on-going*)

10

Technical Books

- H. C. Luong and J. Yin, Low-Voltage Transformer-Feedback CMOS VCOs and Frequency Dividers, Springer, November 2015
- H. C. Luong and G. Leung, *Low-Voltage CMOS RF Frequency Synthesizers*, Cambridge University Press, August 2004.
- V. Cheung and H. C. Luong, *Design of Low-Voltage CMOS Switched-Opamp Switched-Capacitor Systems*, Kluwer Academic Publishers, July 2003.

11

Patents (I)

- Z. Huang and H. C. Luong, "Exponentially Scaled Switched Capacitors," US Patent Application, Serial No. 15/180442, filed in June 2016
- A. Li, H. Luong, X. Lou, "Wideband Injection-Locked Frequency Generation Circuits Using High-Order LC Tanks," US Patent Application, filed in June 2013
- M. Law, A. Bermak, and H. C. Luong, "A Sub-mW Embedded CMOS Temperature Sensor for RFID Food Monitoring Application," US Patent, No. 8,931,953, January 2015
- M. Law, A. Bermak, and H. C. Luong, "Low Voltage Low Power CMOS Temperature Sensor Circuit," *Chinese Patent, No. 102338669A*, May 2014
- S. Rong and H. C. Luong, "Phase-Tuning Technique for Frequency Tuning of VCOs", US Patent, No. 8,339,208, granted in December 2012
- H. Zheng and H.C. Luong, "Double-Balanced Quadrature-Input Quadrature-Output Divider," US Patent, No. 8,140039, March 2012
- S. Rong and H. C. Luong, "Injection-Locking-Range Enhancement Technique for Frequency Dividers," US Patent, No. 7,961,058, June 2011
- V. Cheung and H. C. Luong, "Switched-Opamp Technique for Low-Voltage Switched-Capacitor Circuits," *Chinese Patent, No. ZL 01802426.5*, February 2009

13

JSSC Journal Publication (I)

- S. Zheng, and H. C. Luong, "A WCDMA/WLAN Digital Polar Transmitter with Low-Noise ADPLL, Wideband PM/AM Modulator, and Linearized PA," *IEEE Journal of Solid-State Circuits*, July 2015
- A. Li, S. Zheng, J. Yin, X. Luo, and H. C. Luong, "A 21GHz-48GHz Sub-Harmonic Injection-Locked Fractional-N Frequency Synthesizer for Multi-Band Point-to-Point Backhaul Communications," *IEEE Journal of Solid-State Circuits*, August 2014
- Y. Chao, and H. C. Luong, "Analysis and Design of a 2.9mW 53.4GHz-79.4GHz Frequency-Tracking Injection-Locked Frequency Divider in 65nm CMOS," *Journal of Solid-State Circuits (JSSC)*, October 2013
- L. Wu, A. Li, and H. C. Luong, "A 4-Path 42.8-to-49.5GHz LO Generation with Automatic Phase Tuning for 60GHz Phased-Array Receivers," *Journal of Solid-State Circuits (JSSC)*, October 2013
- J. Yin, and H. C. Luong, "A 57.5-90.1GHz Magnetically-Tuned Multi-Mode CMOS VCO," *IEEE Journal of Solid-State Circuits (JSSC)*, August 2013
- S. Zheng and H. C. Luong, "A CMOS WCDMA/WLAN Digital Polar Transmitter with AM Replica Feedback Linearization," *IEEE Journal of Solid-State Circuits*, July 2013
- S. Rong, and H. C. Luong, "Design and Analysis of Varactor-Less Interpolative-Phase-Tuning Millimeter-Wave LC Oscillators with Multiphase Outputs," *IEEE Journal of Solid-State Circuits (JSSC)*, August 2011

15

16

Patents (II)

- K. C. Kwok and H. C. Luong, "Low-Voltage Low-Phase-Noise Voltage-Controlled Oscillator with Transformer Feedback," US Patent, No. 7,411,468, August 2008
- V. Cheung and H. C. Luong, "Switched-Opamp Technique for Low-Voltage Switched-Capacitor Circuits," *European Patent, No. 1,252,633*, October 2007
- L. Leung and H. C. Luong, "Dual-Mode Voltage-Controlled Oscillator Using Integrated Variable Inductors," US Patent, No. 7,268,634, September 2007
- G. Leung and H. C. Luong, "A Double-Data Rate Phase-Locked-Loop with Phase Aligners to Reduce Clock Skew," US Patent, No. 6,859,109, February 2005
- V. Cheung, J. Wong, and H. C. Luong, "Low-Voltage High-Frequency Frequency Divider Circuit," US Patent, No. 6,831,489, December 2004
- M. Waight, J. Marsh, and H. C. Luong, "Electronically Tuned Agile Integrated Bandpass Filter," US Patent, No. 0, 198, 298, October 2004
- C. W. Lo and H. C. Luong, "Phase-Locked Loop Circuitry with Two Voltage-Controlled Capacitors," US Patent, No. 6,538,519, March 2003
- V. S. L. Cheung and H. C. Luong, "Switched-Opamp Technique for Low-Voltage Switched-Capacitor Circuits," US Patent, No. 6,344,767, February 2002

14

JSSC Journal Publication (II)

- J. Yin, J. Yi, M. Law, M. Ling, P. Lee, B. Ng, B. Gao, H. C. Luong, A. Bermak, M. Chan, W. H. Ki, C. Y. Tsui, M. Yuen, "A System-on-Chip EPC Gen-2 Passive UHF RFID Tag with Embedded Temperature Sensor," *IEEE Journal of Solid-State Circuits* (*JSSC*), November 2010
- H. Zheng, S. Lou, T. Chan, C. Shen, D. Lu, and H. C. Luong, "A 3.1-8.0 GHz MB-OFDM UWB Transceiver in 0.18-µm CMOS," *IEEE Journal of Solid-State Circuits* (JSSC), February 2009
- S. Lou, and H. C. Luong, "A Linearization Technique for RF Receiver Front-End Using Second-Order-Intermodulation Injection," *IEEE Journal of Solid-State Circuits* (JSSC), November 2008
- T. Zheng, and H. C. Luong, "Ultra-Low-Voltage 20-GHz Dividers Using Transformer Feedback in 0.18-µm CMOS Process," *IEEE Journal of Solid-State Circuits*, Oct. 2008
- E. Wang, S. Lou, K. Chui, S. Rong, C. F. Lok, H. Zheng, H. T. Chan, S. W. Man, H. C. Luong, V. K. Lau, and C. Y. Tsui, "A Single-Chip UHF RFID Reader in 0.18-μm CMOS," *IEEE Journal of Solid-State Circuits (JSSC)*, August 2008
- L. Leung, D. Lau, S. Lou, A. Ng, R. Wang, G. Wong, P. Wu, H. Zheng, V. Cheung, and H. C. Luong, "A 1-V 86-mW-RX 53-mW-TX Single-Chip CMOS Transceiver for WLAN IEEE 802.11a," *IEEE Journal of Solid-State Circuits (JSSC)*, September 2007

JSSC Journal Publication (III)

- A. Ng, and H. C. Luong, "A IV 17GHz 5mW Quadrature CMOS VCO Using Transformer Coupling," *IEEE Journal of Solid-State Circuits (JSSC)*, Sep. 2007
- T. Zheng, A. Ng, and H. C. Luong, "A 1.5V 9-Band CMOS Synthesizer for MB-OFDM UWB Transceivers," *IEEE Journal of Solid-State Circuits*, June 2007
- P. Wu, V. Cheung, and H. C. Luong, "A 1-V 100MS/s 8-bit CMOS Switched-Opamp Pipelined ADC Using Loading-Free Architecture," *IEEE Journal of Solid-State Circuits (JSSC)*, April 2007
- A. Ng, G. Leung, K. Kwok, L. Leung, and H. C. Luong, "A 1-V 24-GHz 17.5-mW Phase-Locked Loop in a 0.18-um CMOS Process," *IEEE Journal of Solid-State Circuits (JSSC)*, June 2006
- K. Chun, and H. C. Luong, "Ultra-Low-Voltage High-Performance CMOS VCOs Using Transformer Feedback," *IEEE Journal of Solid-State Circuits*, March 2005
- K. Ng, and H. C. Luong, "A 28-MHz Wideband Switched-Capacitor Bandpass Filter with Transmission Zeros for High Attenuation," *IEEE Journal of Solid-State Circuits (JSSC)*, March 2005
- K. Ng, V. Cheung, and H. C. Luong, "A 44-MHz Wideband Switched-Capacitor Bandpass Filter Using Double-Sampling Pseudo-Two-Path Techniques," *IEEE Journal of Solid-State Circuits (JSSC)*, March 2005
- G. Leung, and H. C. Luong, "A 1-V 5.2-GHz 27.5-mW Fully-Integrated CMOS WLAN Synthesizer," *IEEE Journal of Solid-State Circuits (JSSC)*, Nov. 2004

17

ISSCC Conference Publication (I)

- Z. Huang, L. Li, and H. C. Luong, "A 4.2us-Settling-Time 3rd-Order 2.1-GHz Phase-Noise-Rejection PLL Using A Cascaded Time-Amplified Clock-Skew Sub-Sampling DLL," *IEEE International Solid-State Circuit Conference (ISSCC)*, Feb. 2016
- Y. Chao, L. Li, and H. C. Luong, "An 86GHz-94.3GHz Transmitter with 15.3dBm Output Power and 9.6% Efficiency in 65nm CMOS," *IEEE International Solid-State Circuit Conference (ISSCC)*, Feb. 2016
- Z. Huang, H. C. Luong, et al., "A 70.5GHz-to-85.5GHz 65nm Phase-Locked Loop with Passive Scaling of Loop Filter," *IEEE International Solid-State Circuit Conference (ISSCC)*, Feb. 2015
- L. Wu, A. Li, and H. C. Luong, "A 4-Path 42.8-to-49.5GHz LO Generation with Automatic Phase Tuning for 60GHz Phased-Array Receivers," *IEEE International Solid-State Circuit Conference 2012*, February 2012

JSSC Journal Publication (IV)

- J. Wong, V. Cheung, H. C. Luong, "A 1-V 2.5-mW 5.2-GHz Frequency Divider in a 0.35-um CMOS Process," *IEEE Journal of Solid-State Circuits (JSSC)*, Oct.2003
- V. S. L. Cheung, H. C. Luong, M. Chan, and W. H. Ki, "A 1-V 3.5-mW CMOS Switched-Opamp Quadrature IF Circuitry for Bluetooth Receivers," *IEEE Journal* of Solid-State Circuits (JSSC), May 2003
- V. S. L. Cheung, H. C. Luong, and W. H. Ki, "A 1-V 10.7-MHz Switched-Opamp Bandpass Sigma Delta Modulator Using Double-Sampling Finite-Gain-Compensation Technique," *IEEE Journal of Solid-State Circuits (JSSC)*, Oct. 2002.
- T. Kan, G. Leung, and H. C. Luong, "A 2-V 1.8-GHz Fully-Integrated CMOS Dual-Loop incidence Synthesizer," *IEEE Journal of Solid-State Circuits*, August 2002.
- C. B. Guo, C. W. Lo, T. Choi, I. Hsu, D. Leung, T. Kan, A. Chan, H. C. Luong, "A 900-MHz Fully-Integrated CMOS Wireless Receiver with On-Chip RF and IF Filters and 79-dB Image Rejection," *IEEE Journal of Solid-State Circuits*, August 2002.
- C. W. Lo and H. C. Luong, "A 1.5-V 900-MHz Monolithic CMOS Fast-Switching Frequency Synthesizer for Wireless Applications," *IEEE Journal of Solid-State Circuits (JSSC)*, pp. 459-70, April 2002.
- W. Yan and H. C. Luong, "A 2-V 900-MHz Monolithic CMOS Dual-Loop Frequency Synthesizer for GSM Wireless Receivers," *IEEE Journal of Solid-State Circuits (JSSC)*, February 2001.
- V. S. L. Cheung, H. C. Luong, and W. H. Ki, "A 1-V Switched-Opamp Switched-Capacitor Pseudo-2-Path Filter," *IEEE Journal of Solid-State Circuits (JSSC)*, January 2001

18

ISSCC Conference Publication (II)

- S. Rong, and H. C. Luong, "A 0.05-to-10GHz 19-to-22GHz and 38-to-44GHz SDR Frequency Synthesizer in in 0.13um CMOS," *IEEE International Solid-State Circuit Conference (ISSCC)*, February 2011
- J. Yin, J. Yi, M. Law, M. Ling, P. Lee, B. Ng, B. Gao, H. C. Luong, A. Bermak, M. Chan, W. Ki, C. Y. Tsui, M. Yuen, "A System-on-Chip EPC Gen-2 Passive UHF RFID Tag with Embedded Temperature Sensor," *IEEE International Solid-State Circuit Conference 2010 (ISSCC)*, February 2010
- S. Rong, A. Ng, and H. C. Luong, "0.9mW 7GHz and 1.6mW 60GHz Frequency Dividers with Locking-Range Enhancement in 0.13um CMOS," *IEEE International Solid-State Circuit Conference*, February 2009
- A. Ng, and H. C. Luong, "A 1V 17GHz 5mW Quadrature CMOS VCO Using Transformer Coupling," *IEEE International Solid-State Circuit Conference* (ISSCC), February 2006

20

21

22

Sing-Chip CMOS Transceivers for Wireless Communications

Outline

- Research Focus
- Summary of Activities in RFIC and Single-Chip Systems
 - RF and mmW IC Building Blocks
 - Single-Chip Transceiver Systems for Wireless Applications
- IP and Publication
 - Books
 - Patents
 - Journal of Solid-State Circuits (JSSC)
 - International of Solid-State Circuit Conference (ISSCC)
- Appendix
 - Information about Completed and On-Going Projects

Technology	0.35-μm double-poly 4-metal CMC process (V _{TN} : 0.6V, V _{TP} : -0.77V
Supply Voltage	1
Input Frequency	2.402GHz - 2.480 GH
Channel Bandwidth	1 MH
Sensitivity	-70 dBr
SNR	18 dB with -70-dBm Input Signa
Noise Figure	26 di
Linearity (IIP3)	- 22 dBm @ Max. Gai
Image Rejection	28 di
Variable-Gain-Control	0dB to 36dB (6dB per step
Power Consumption	Receiver: 10 mV
Chip Area	3.4 x 1.6 mm

	Existing Solutions	Proposed Transceiver
Supply Voltage	≥ 1.8V	1.0V
Power Consumption	\geq 150 mW (RX)	< 50 mW (RX)
	≥ 180 mW (TX)	< 50 mW (TX)
Chip Area	$\geq 13 \text{ mm}^2$	$\sim > 10 \text{ mm}^2$
Including Power- Management Circuitry	No	Yes
Including ADC & DAC	No	Yes
Process	SiGe, BiCMOS, CMOS	CMOS

1.8-V 531-mW Single-Chip Single-Conversion CMOS Cable TV Tuner [Wang, A-SSCC'05]

- Novel Single-Conversion Architecture with Image Rejection Larger than 60 dB (without trimming)
- Full Integrated in a CMOS Single-Chip
- Single Frequency Synthesizer with Single Wideband VCO
- Integrated 44-MHz Switched-Capacitor Channel-Selection Filter
- Low Power Consumption (~ 500 mW as compared to ~ > 2.0 W for Existing Solutions)

33

1.8-V 531-mW Single-Chip Single-Conversion CMOS Cable TV Tuner [Wang, A-SSCC'05]

	Existing Solutions	Proposed Tuner
Process	SiGe, BiCMOS, SOI CMOS	CMOS
Supply Voltage	≥ 1.8V	1.8V
Power Consumption	≥ 2000 mW	~ 531 mW
On-Chip Channel- Selection Filter	No	Yes
Chip Area	> 12 mm ²	$\sim 7.1 \text{ mm}^2$

	Band Group 1 (3.1 – 4.75 GHz)	Band Group 2 (4.75 – 6.3 GHz)	Band Group 3 (6.3 – 7.9 GHz)
	Receiver		
Voltage Gain (dB)	>81.5	>84.1	>85.2
NF (dB)*	8.12	7.85	7.04
S11	< -13	< -18	<-20
In-Band IIP3 (dBm)**	-12.65	-13.7	
Input P-1dB (dBm)**	-19.9	-21.7	-22.6
In-Band IIP2 (dBm)		22	
·	Transmitter		
Output P-1dB (dBm)	-9.3	-9.2	-10
Dutput Sideband Rejection (dBc)	<-33.3	<-33.9	<-33.6
•	Synthesizer		
PN @ 10MHz (dBc/Hz)	< -129.7	<-127.3	< -126.7
LO Sideband Rejection (dBc)	< -36	< -28	< -27.9
	Other Paramete	rs	
Supply Voltage		1.8 V	
Current Consumption (mA)	101 mA (RX w/o ADC); 20 mA (TX w/o DAC) 57 mA (Synthesizer) 109 mA (IQ ADC); 20 mA (IQ DAC)		
Process	-	ISMC 0.18-µm CMOS	
Chip Area		5.2×2.94 mm ²	

System Parameters	Spec	Specification		
Standard	EF	PC G2		
Transmitter channel bandwidth	500 KHz for US	200 KHz for Europe		
Frequency range	860 MHz	z – 960 MHz		
BER		10-3		
Output SNR	7 dB			
Sensitivity	-90 dBm			
Maximum input signal	-10 dBm			
Noise Figure	< 9 dB			
Linearity (IIP3)	-1 dBm			
Maximum gain	9	96 dB		
Phase noise of LO	-117dBc/Hz @ 100kHz			
Output power	10 dBm – 20	dBm (32 steps)		
Supply voltage	1V or 1.8	V if necessary		

System Parameters	Spec	ification		
Standard	El	PC G2		
Transmitter channel bandwidth	500 KHz for US 200 KHz for E			
Frequency range	860 MH	z – 960 MHz		
Minimum input power	$\sim 50 \ \mu W$			
Minimum reflected power	~ - 90 dBm			
Read/Write Distance	~ 3 1	n - 10 m		

Operating	Frequency	860 MHz to 960 MHz		
RX's chann	el bandwidth	80 KHz to 1.28 MHz		
	BW=1.28 MHz		13.4	
RX's no	oise figure	BW=640 KHz	15.1	
(1D)	BW=320 KHz	17.4	
		BW=1.28 MHz	-4.5	
RX'	s IIP3 Bm)	BW=640 KHz	-5	
(ubiii)		BW=320 KHz	-6	
RX's gain		14 dB to 77 dB		
RX front-end's input P-1dB		-9.4 dBm		
TX's side-band rejection		-33 dBc		
TV's subset D 1 JD		w/ external PA	>30 dBm	
1 A S OU	put P-10B	w/o external PA	10.4 dBm	
Synthesizer	's phase noise	-110dBc/Hz @ 200kHz (from 880MHz)	
	Dessions	Max (f_{elk} =40.96MHz, CSF on, $\Sigma\Delta$ ADC 4 th -order)	153.8 mW	
Power	Receiver	Min (f_{clk} =2.56MHz, CSF off, $\Sigma\Delta$ ADC 2 nd -order)	80.6 mW	
dissipation	Transmitter	136 mW		
	Synthesizer	7.4 mW		

	Cold-Chain Tag	Human-Body Tag
Process	0.18 μm CMOS	0.18 μm CMOS
Tag Chip Area	1.1 mm ²	1.2 mm ²
Frequency	860-960 MHz	860-960 MHz
Memory Size	512 bits	512 bits
Sensing Sensitivity	-7.0 dBm	-4.4 dBm
Sensing Distance (EIRP 4W)	4.0 m	3.0 m
Temperature Range	-40 to 60 °C	35 to 45 °C
Sensing Step	0.3 °C	0.05 °C
Sensing Error	-1.2 °C /+ 0.9 °C	- 0.15 °C / +0.05 °C

5	Summary a	and Cor	nparison	l
Reference	Presti JSSC 10/07	Yoo JSSC 12/11	Chowdhury JSSC Aug 11	This work
Technology	0.13um CMOS SOI	90nm CMOS	65nm CMOS	65nm CMOS
Frequency [GHz]	0.8~2	1.8~2.8	~2.25	1.5~2.7
Supply [V]	1.2~2.1	1.5/3	1	1.2/2
Modulation	EDGE / WCDMA / WiMAX	20M-WLAN	20M-WLAN	WCDMA / 20M-WLAN
Predistortion	Yes	Yes	Yes	No
EVM (RMS)	1.53% (5M WiMAX)	2.6%	4.0%	2.8%(WCDMA) 4.1% (WLAN)
Output Matching Network	Off-chip	Off-chip	On-chip	On-chip
Peak Output Power [dBm]	25	25.2	21.7	20.4
Peak PAE	47%	45%	36%	32.3%

	This work	Tsai, ISSCC 2009	Xu, RFIC 2010	Voinigescu, JSSC 2011	Wang, TMTT 2012
Freq. [GHz]	90.2	96	74	89	96
Туре	Sub-harmonic	Fundamental	Fundamental	Fundamental	Sub-harmonic
Division Ratio	512	256	256 1024 128		768
Loop BW.	100kHz	2MHz	300kHz	1.72MHz	1MHz
Locking Range	9.2%	1.5%	10.8%	6.7%	10.9%
PN @ 1MHz [dBc/Hz]	-89.5	-76	-83	-82	-92
Spur [dBc]	-57	-51	-49	N/A	-52
Supply [V]	1.2	1.2/1.3	1	1.8/2.5	1.8/2.5
Power [mW]	69.71	43.7	65	550	140
FoM ² [dBc/Hz]	-170.2	-159.2	162.3	-153.6	-170.1
Technology	CMOS 65nm	CMOS 65nm	CMOS 65nm	SiGe 130nm	SiGe 130nm

Transr	nitte	r —	Sun	nmar	y an	d Co	omp	aris	on
Ref.	Tech.	Freq. [GHz]	LO	PN [dBc/Hz]	P _{out} [dBm]	P _{dc} [mW]	h [%]	VDD [V]	Area [mm ²]
ISSCC 2009 Kawano	CMOS 90nm	73.5 - 77.1	VCO	-86 (1MHz)	6.3	660	0.6	1.2	0.361
JSSC 2010 Lee	CMOS 65nm	75.6 - 76.3	PLL	-85 (1MHz)	5.1	188	1.7	1.2	n/a
ISSCC 2010 Sandstrom	CMOS 65nm	75-95	Off chip	n/a	6.6	120	3.8	1.2	1.2
CICC 2011 To	CMOS 65nm	74-84	VCO	-87 (1MHz)	13.5	420	5.3	1	1.8
VLSI 2013 Huang	CMOS 65nm	77	PLL	-83 (1MHz)	9	n/a	n/a	1.2	n/a
JSSC 2013 Arbabian	SiGe 130nm	87-97	PLL	-102 (1MHz)	<132	898	2.2	1.2-4	n/a
ISSCC 2014 Giannini	CMOS 28nm	71-84	ILO	n/a	11	121	10.4	0.9	1.32
TMTT 2014 Adnan	CMOS 65nm	99- 110	VCO	-92.8 (1MHz)	4.5	54	5.3	1.2	0.231
VLSI 2014 Chen	65nm CMOS	92.2	VCO	n/a	5	112	2.9	1.2	0.551
This work	65nm CMOS	86 - 94.3	PLL	-89.5 (1MHz)	15.3	353.3	9.6	1.2	0.91
	-								69

Dual-Loop GSM Synthesizer [Yan, JSSC '01] Design [Craninckx 98] [Ali 96] [Parker 98] This Work Architecture Fractional-N Fractional-N Fractional-N Dual-Loop 0.4-µm CMOS 0.6-µm CMOS Process 25-GHz BJT 0.5-µm CMOS Carrier Frequency 1.8 GHz 900 MHz 1.6 GHz 900 MHz 200 kHz 600 kHz 600 kHz 200 kHz Channel Spacing Reference 26.6 MHz 9.6 MHz 61.5 MHz 1.6 & 205 MHz Frequency Loop Bandwidth 45 kHz 4 kHz 200 kHz 40 & 27 kHz 3.23 mm² 1.6 mm² 2.64 mm² Chip Area 5.5 mm² 600-kHz Phase -121 dBc/Hz -116.6 dBc/Hz -115 dBc/Hz -121.83 dBc/Hz Noise Spurious Level -75 dBc < -110 dBc -83 dBc -79.5 dBc < 830 µs Switching Time < 250 µs < 600 µs N. A. Supply Voltage 3 V 2.7 to 5 V 3 V 2 V Power 51 mW 50 mW 90 mW 34 mW 72

Fully-Integrated CMOS RF Frequency Synthesizers

	JSSC 98	JSSC 96	This work
<u> </u>	Steyaert	Inam	0000
Center frequency	1.8GHz	900MHz	900MHz (857.6-922.8MHz)
Channel spacing	200kHz	600kHz	200kHz (25kHz min)
No. of Channel	124	41	>124
Process	0.4µm CMOS	25GHz BJT	0.5µm CMOS
Architecture	FN	FN	FN & SCA
Supply voltage	3V	2.7-5V	1.5V
Power consumption	51mW	50mW	30mW
Reference Freq.	26.6MHz	9.6MHz	25.6MHz
Chip area	3.23mm ²	5.5mm ²	0.99mm ²
On chip filter	Yes	No	Yes
Loop Bandwidth	45kHz	4kHz	80kHz
Phase noise@600kHz	-121dBc/Hz	-116.6dBc/Hz	-118dBc/Hz
Spurs	-75dBc	<-110dBc	-67dBc
Switching time	<250usec	<600usec	150usec

	JSSC 98	JSSC 96	This work	
	Steyaert	Tham		
frequency	1.8GHz	900MHz	900MHz (857.6-922.8MHz)	
el spacing	200kHz	600kHz	200kHz (25kHz min)	
Channel	124	41	>124	
s	0.4µm CMOS	25GHz BJT	0.5µm CMOS	
cture	FN	FN	FN & SCA	
voltage	3V	2.7-5V	1.5V	
consumption	51mW	50mW	30mW	
nce Freq.	26.6MHz	9.6MHz	25.6MHz	
ea	3.23mm ²	5.5mm ²	0.99mm ²	
o filter	Yes	No	Yes	
andwidth	45kHz	4kHz	80kHz	
	-121dBc/Hz	-116.6dBc/Hz	-118dBc/Hz	
600kHz				
	-75dBc	<-110dBc	-67dBc	
ng time	<250µsec	<600µsec	150µsec	

	[D. Su, JSSC '02]	[P. Zhang, ISSCC '03]	[G. Leung, JSSC '04]	This work
Supply (V)	2.5	1.8	1	1
Process (µm)	0.25	0.18	0.18	0.18
Frequency (GHz)	4.13 - 4.27	5.15 - 5.35	5.45 - 5.65	4.11 - 4.35
Phase noise (dBc/Hz @ 20MHz)	-138	-139	-137	-139
Spurs (dBc)	NA	-66 @13.3MHz	-80 @11MHz	-63 @16MHz
Area (mm ²)	NA	NA	0.99	1.28
Power (mW)	180	56	27.5	9.68

1-V 5.2-GHz CMOS Synthesizer for WLAN

	Measurement Result
Technology	TSMC 0.18µm CMOS
Supply Voltage	1 V
Power Consumption	Total: 17.5mW VCO + Divider: 14.5mW PD: 3mW
Frequency	24.2GHz
VCO tuning range	6%
VCO phase noise	-119.4dBc/Hz@10MHz
PLL in-band Phase Noise	-106.3dBc/Hz@100kHz
PLL out-band Phase Noise	-119.1dBc/Hz@10MHz
Active Core Area	0.55 mm ²

	Tech.	Freq. [GHz]	Input Power [dBm]	Locking Range [GHz]/[%]	Supply Voltage [V]	Power [mW]	FOM ²
T. Shibasaki JSSC 03/08	90nm CMOS	20	4	5.1/25.5	1.2	3.21	1.6
Q. Gu JSSC 04/08	90nm CMOS	57	0	7.4/13.0	-	2.5 ¹	3.0
JC. Chien ISSCC 07	0.18µm CMOS	40	0	10.6/26.5	1.0	6	1.8
KH. Tsai ISSCC 08	90nm CMOS	90	0	11/12.2	1.2	3.5	3.1
A. Mazzanti JSSC 09/04	0.18µm CMOS	4	0	0.6/15	1.8	3.6	0.2
Proposed ILFD-1	0.13µm CMOS	7	0	2.4/34.3	0.8	0.9	2.7
Proposed ILFD-2	0.13µm CMOS	63	0	7.4/11.7	0.8	1.6	4.6

SDR Synthesizer - Summary [Rong, ISSCC '11]							
Reference	[Koukab, JSSC, 7/06]	[Borremans, JSSC, 12/08]	[Yu, RFIC, 6/09]	[Razavi, JSSC, 8/10]	[Osmany, JSSC, 9/10]	This work	
Output Frequencies [GHz]	0.8~1.1 1.5~2.1 2.3~3.1 4.7~6.2	0.8~1 1.6~2 2.2~2.8 4.4~5.6	0.125~ 26	1.4/1.8/2.0/ 2.2/2.3/2.9/ 3.5/4.4/4.7/ 5.8/7.0/8.8	0.6~4.6 5~7 10~14 20~28	0.047~10 19~22 38~44	
In-band phase noise @ 10KHz (f _c =1.7GHz) [dBc/Hz]	-79.8	N/A	-91.6	N/A	-109.94	-91~-98	
Out-band phase noise @ 3MHz (f _c =1.7GHz) [dBc/Hz]	-138.5	-129.6 ³	-137.2 ³⁴	-129.8	-136.5 ³⁴	-139.6	
Power [mW]	6.2 (VCO)	60	1283	31	680	33~83	
Area [mm ²]	2.55	0.06	4.4	0.29	4.8	3.0	
Technology	0.25µm BiCMOS	90nm CMOS	0.18µm BiCMOS	90nm CMOS	0.25μm BiCMOS	0.13μm CMOS	
						91	

LO Generation - Key Features [ISSCC '12]

- System architecture and design techniques:
 - Frequency tripler in LO path to reduce the linear phase range required for phase shifter
 - Linear phase shifter based on injection-locked oscillator
 - Locking range enhancement for frequency tripler
 - Automatic successive phase tuning without dedicated reference voltages for phase detection
- LO generation measures phase resolution of 22.5° and phase error $< 1.5^{\circ}$ with amplitude variations $< \pm 0.35$ dB.

Ref.	Natarajan JSSC '06	Scheir JSSC '08	Hashemi TMTT '05	Chan ISSCC '10	This work
Frequency [GHz]	50.3 ~ 55.5	43.7 ~ 51.7	18.8 ~ 21.0	57.0	42.8 ~ 49.5
Amplitude Mismatch [dB]	1.5	-4.0 ~ 1.6	N/A	N/A	± 0.35
Phase Resolution [°]	N/A	45.0	22.5	N/A	22.5
Phase Error [°]	0.5 *	5.7	N/A	N/A	< 1.5
Path Number	4	2	8	4	4
Supply [V]	2.5	1.2	2.5	1.0	1.0
Current [mA]	56	28.7	76.4 **	310	55 (core) 30 (auto. tuning)
Technology	120nm SiGe BiCMOS	90nm CMOS	180nm SiGe HBT CMOS	65nm CMOS	65nm CMOS
* Simulation for 5-bit I ** Including a phased					
	e 4 ⁹				

IC Development Projects and Industrial Contracts

Industrial Collaboration and Support

- Integrated-Circuit Industrial Consortium (http://ic2.ee.ust.hk/)
- Patents and Intellectual Properties on IC Modules and Systems Available for Licensing and Technology Transfer
- Provide IC Design Services and Support:
 - IP Licensing
 - Consultancy, Workshop, and Engineer Training
 - Engineer-In-Residence Program
 - Work on IC Technology Transfer and Product Development:
 - 1-V 2.5-GHz PLL (*Completed*)
 - 488-MHz Synthesizer (*Completed*)
 - 2.4-GHz Low-Phase-Noise PLL (Completed)
 - 22GHz–44GHz Low-Phase-Noise Synthesizer (Completed)
 - Passive RFID Tag with Temperature Sensor (On-going)
 - MEMS Oscillators and Clock Generators (*On-going*)

98

A 1-V 2.5-GHz Phase-Locked Loop

<complex-block><complex-block><complex-block><complex-block><complex-block><image><image>

	Supply Voltage	2.7V - 3.3V		
Nu	umber of Channels	63		
I	Frequency Range	458-520MHz		
Fre	equency Resolution	1MHz		
	Spurious Tone	-35.3dBc@1MHz		
Frequen	cy Accuracy of Crystal	±10kHz w/supply=2.7V-3.3		
Power	Crystal Oscillator	≤7mW		
Consumption	Frequency Synthesizer	≤38mW (w/o crystal oscillato		
Output Power	Crystal Oscillator	-9.4dBm@50Ω		
o uput i on ti	Frequency Synthesizer	-12dBm@50Ω		
Dhaga Maisa	Crystal Oscillator	-139 dBc@500kHz		
Phase moise	Frequency Synthesizer	-93.5dBc@500kHz		

A CMOS 21GHz-48GHz Frequency Synthesizer – Performance Summary [Li, JSSC 8/2014]									
	This Work	D. Murphy JSSC 7/2011	O. Richard ISSCC 2010	A. Musa ASSC 11/2011	S. Pellerano ISSCC 2008				
Frequency (GHz)	42.0	43.20	20.88	60.48	41.247				
Output Frequency Range (GHz)	20.6-48.2	42.1 - 53	17.5 - 21 35 - 41.9	58 - 63	39.1 - 41.6				
fref (MHz)	100	54	36	36	50				
Out-band phase noise (dBc/Hz)	-103.58 @ 1MHz	-85.67 @ 1MHz	-100 @ 1MHz	-96 @ 1MHz	-90 @ 1MHz				
Integrated Jitter (s)	1.056 ps	n/a	n/a	n/a	n/a				
Power (mW)	148.3	72	80	77.5	64				
Process	65nm CMOS	65nm CMOS	65nm CMOS	65nm CMOS	90nm CMOS				
Architecture	Fractional-N (VCO @ 5.26GHz)	Integer-N (VCO @ 50.11GHz)	Integer-N (QVCO @ 20.88GHz)	Integer-N (VCO @ 20GHz)	Fractional-N (VCO @ 41.247GHz)				